RTM RF Backplane Extensions for MicroTCA.4 Crates – Concept and Performance Measurements

Krzysztof Czuba
Waraw University of Technology, ISE

kczyuba@ise.pw.edu.pl

20th Real Time Conference
Padova, Italy, 06.06.2016
RF Signal Distribution in Multichannel Control Systems

- RF front end require distribution of tens precise LO / CLK / REF signals to RTM and/or AMC cards

- Impedance controlled lines and coax connectors

- Tens of cables hanging in front of the crate very difficult cable management!
The First Idea – RTM RF Backplane in the MTCA.4 Crate

CRATE FRONT

AMC

RTM

REAR

Zone 3

Zone 2
ADF Connector

Zone 1
Multipin RF Coaxial Connector

AMC Backplane

RTM Backplane

ERMET ZD, 3x10 diff. pairs

Radiall Coaxipack 2
6-pin, 6GHz RF connectors
First RF Backplane Version – Assumptions and Problems

- Custom design for E-XFEL LLRF
- Single input with adapter board
- RF signals distributed to 8 slots
- LO and MO signal power splitting on board (careful RF design) (no flexibility)
- 50Ω matching of not used RF signals:
 - manually by putting loads on connectors (dummy load boards)
- EMI protection from the “digital world” (AMC Backplane)
- Improve system reliability
- Easier maintenance: no need to disconnect multiple cables during service
Further Development of RF Backplane Concept

- Empty areas behind front Power Module and MCH used for further extensions of MTCA.4 standard
 - eRTM concept
 - Rear Power Modules for eRTMs and µRTMs
 - Allows for significant reduction of control system size (removal of external LO and CLK signal sources)

- RF signal distribution from slot #15 to all µRTM slots

- Automatic matching of unused RF signals
 - RF hot-plug (probably world’s first)

- Necessary to introduce management over the Backplane
RTM Backplane – Final Concept Highlights

- **Fully compatible to the standard.** No mechanical collision with standard RTM boards. Supported by crate manufacturers.

- **Hot swap functionality for RF signals.** IPMI extension for RTM Backplane worked out with N.A.T.

- RTM Backplane is passive. All intelligence in modules -> great flexibility for users.

- Developed a concept of extended RTM (eRTM) boards.

- **Redundant high performance rear power supply** for analog applications and additional power for digital RTMs.
Slots, eRTMs and Rear Power Supply Modules

Crate Top View

<table>
<thead>
<tr>
<th></th>
<th>RPM</th>
<th>RPM</th>
<th>MCH-RTM</th>
<th>µRTM</th>
<th>µRTM</th>
<th>µRTM</th>
<th>µRTM</th>
<th>µRTM</th>
<th>µRTM</th>
<th>µRTM</th>
<th>µRTM</th>
<th>µRTM</th>
<th>eRTM13</th>
<th>eRTM14</th>
<th>eRTM15</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZONE 3 Connectors</td>
<td>RTM Backplane</td>
<td>AMC Backplane</td>
<td></td>
</tr>
</tbody>
</table>

Crate Rear View

- **RTM Backplane Manager (MCH-RTM)**
- **1 or 2 Rear Power Modules**
- **Up to 3 extended RTMs (eRTM)**
- **Redundant MCH-RTM or eRTM**

open for redundant MCH-RTM architecture
eRTMs

- Offer system designers additional space (note that eRTMs are wider (6HE) than uRTMs (4HE))
- Designers can use 2 or 3 slots for one module
 - eRTMs are intended for applications requiring significant space for components like filters or precise temperature stabilization
- Backplane provides management, power supply and data links for eRTMs
- Slot 15 was designated for RF signal entry

eRTM #15 example. LO and CLK generator
Courtesy: T. Rohlev, U. Mavric. See poster on Tuesday

Universal slot #15 test adaptor
Connector Zones on the RTM Backplane

- 3 x eRTM (3 x 6HP) in Zones 1, 2, and 3
- 12 x μRTM (12 x 4HP)
- 2 x RPM (6HP) in Zones 2 and 3

Up to 6 coax lines 50Ω, DC-6GHz
uRFB Management and Rear Power Supply

- Management by MCH-RTM in slot #1-1 and (option) #13
- Standard (AMC) management extended to the RTM side
- MCH-RTM can also provide fast CPU with direct links to AMC backplane
- FRUs with information about connectivity and power
- Rear PM can supply **4 x +12V to eRTMs and 12x +/-VV to μRTMs**
- μRTM can use +/-VV from RTM Backplane or standard +12V from AMC
- **Economic use case**: power supply for eRTM in slot #15 from MCH-RTM (no Rear PM) but limited to max 25W
- Optional high voltage (~100 V, not on the RTM Backplane for safety reasons!) Rear PM for e.g. piezo driver application
- 27 RF signals (optimized for 1.3 GHz but can work up to 6 GHz)
- 22 CLK signals
- „Analog” power supply: +/-7 V for RTMs and +12 V for eRTMs
- Management and communication
RF and CLK Performance Optimization

> **Required:**

- min. 80 dB isolation of RF-to-RF and CLK-to-RF signals
- „as low as reasonably achievable” RF loss and phase drifts
- Reflections lower than -15 dB

> **Careful RF PCB design performed**

- 16 layer PCB
- Hybrid design: RF substrate for RF and CLK lines, standard substrate for power supply
- Large effort put in grounding (to minimize reflections, crosstalk, loss)
- Optimization of power supply network (4 x 12V, 7A; 12 x 2 x +/- VV 2A) including control of return currents
- 3D EM simulations of coaxial connectors to PCB interface
Automated Test Stand

- Time consuming RF measurements of RF and CLK performance

- Automated test stand and adapter boards were designed to allow fully automatic measurements and report generation

- ~400 VNA measurements needed for full test
 - manually 1-2 days + 1 day for report generation assuming no human mistake is done…
 - **with test stand ~25 min. including report**
Test Boards

VNA calibration board

Adapter board for precise S-parameter measurements

eRTM15 test board

uRTM test board
Performance Measurement Results (Example)

Table I: Measured Attenuation and Reflections of the Backplane @1.3GHz for LO, REF and CAL Lines

| Slot | A_{REF} [dB] | $|\Gamma_{\text{REF}}|$ [dB] | A_{LO} [dB] | $|\Gamma_{\text{LO}}|$ [dB] | A_{CAL} [dB] | $|\Gamma_{\text{CAL}}|$ [dB] |
|------|-----------------------|-----------------|-------------------|-----------------|-------------------|-----------------|
| 4 | 2.4 | -24.3 | 2.9 | -40.0 | 2.5 | -26.1 |
| 5 | 2.1 | -23.4 | 2.7 | -20.5 | 2.4 | -17.9 |
| 6 | 2.0 | -20.4 | 2.3 | -25.7 | 2.3 | -22.4 |
| 7 | 2.0 | -15.9 | 2.2 | -18.7 | 2.1 | -22.3 |
| 8 | 1.6 | -22.5 | 2.2 | -21.0 | 2.0 | -19.0 |
| 9 | 1.6 | -24.5 | 2.0 | -23.0 | 1.7 | -26.8 |
| 10 | 1.5 | -16.0 | 1.9 | -18.6 | 1.6 | -18.8 |
| 11 | 1.4 | -19.4 | 1.5 | -22.4 | 1.5 | -19.6 |
| 12 | 1.1 | -16.2 | 1.4 | -19.1 | 1.4 | -30.0 |

Table I: Measured crosstalk between REF and LO lines @ 1.3 GHz, [dB]

<table>
<thead>
<tr>
<th>Victims</th>
<th>REF4</th>
<th>REF5</th>
<th>REF6</th>
<th>REF7</th>
<th>REF8</th>
<th>REF9</th>
<th>REF10</th>
<th>REF11</th>
<th>REF12</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO4</td>
<td>93</td>
<td>109</td>
<td>95</td>
<td>97</td>
<td>115</td>
<td>105</td>
<td>105</td>
<td>112</td>
<td>113</td>
</tr>
<tr>
<td>LO5</td>
<td>103</td>
<td>102</td>
<td>106</td>
<td>93</td>
<td>114</td>
<td>101</td>
<td>109</td>
<td>109</td>
<td>112</td>
</tr>
<tr>
<td>LO6</td>
<td>102</td>
<td>95</td>
<td>93</td>
<td>113</td>
<td>119</td>
<td>112</td>
<td>106</td>
<td>111</td>
<td>117</td>
</tr>
<tr>
<td>LO7</td>
<td>100</td>
<td>102</td>
<td>104</td>
<td>97</td>
<td>113</td>
<td>104</td>
<td>111</td>
<td>109</td>
<td>113</td>
</tr>
<tr>
<td>LO8</td>
<td>95</td>
<td>102</td>
<td>109</td>
<td>103</td>
<td>97</td>
<td>106</td>
<td>106</td>
<td>113</td>
<td>114</td>
</tr>
<tr>
<td>LO9</td>
<td>95</td>
<td>97</td>
<td>111</td>
<td>111</td>
<td>115</td>
<td>93</td>
<td>107</td>
<td>108</td>
<td>109</td>
</tr>
<tr>
<td>LO10</td>
<td>97</td>
<td>100</td>
<td>114</td>
<td>112</td>
<td>118</td>
<td>111</td>
<td>103</td>
<td>109</td>
<td>105</td>
</tr>
<tr>
<td>LO11</td>
<td>95</td>
<td>111</td>
<td>112</td>
<td>114</td>
<td>113</td>
<td>102</td>
<td>107</td>
<td>95</td>
<td>109</td>
</tr>
<tr>
<td>LO12</td>
<td>103</td>
<td>105</td>
<td>108</td>
<td>106</td>
<td>109</td>
<td>101</td>
<td>107</td>
<td>109</td>
<td>93</td>
</tr>
</tbody>
</table>
Phase Drifs

- Critical for LLRF applications
- PCB traces are sensitive to temperature and humidity variations on level important for LLRF
- Test board was designed and a method developed to calibrate out test cable drifts
- Measured phase drifts
 - by temperature are in range of 40 – 70 fs/°C p-p
 (~0.035 °C @1.3 GHz) for the longest line
 - by humidity ~2 \(\frac{fs}{%RH} \)
 - usually humidity changes by few tens %/day
 - Expected drifts 10 – 20 \(\frac{fs}{%RH} \) p-p during day
PICMG Standardization Process

- All ideas and developments were base for PICMG standardization

- PICMG Hardware Group did a great job to collect it all, improve and significantly extend before putting into PICMG document

- PICMG document covers general RTM Backplane with MCH-RTM, eRTMs and Rear PMs, mechanics, protective covers and more

- Very impressive document: ~170 pages, 45 figures, 55 tables

- Close to release
Summary

- Compact solution integrated with the crate
- No collision with standard MTCA cards
- Reduces number of cable connections and improves reliability and maintainability
- Hot-swap for high-performance RF signals up to 6 GHz
- High-performance +/-V managed power supplies for RTMs
- eRTMs to increase number and size of modules
- Developed and tested successfully
- Still plan to do extensive performance tests with Rear PMs
- PICMG standard to be available soon
Thank you for attention!