LLRF module production for XFEL

2015 MSK collaboration workshop

Julien Branlard
LLRF module production for XFEL
ISE, Warsaw, 11.6.2015
What deserves our attention
(a.k.a. what keeps me up at night)

> **REFM**
 - REFM-OPT production (1st dummy) + tests
 - REFM chassis mechanical design
 - Bridge the installation gap
 - Production strategy, quality control, installation

> **Support modules (TMCB/FRED)**
 - TMCB + backplane fully tested
 - FRED production and compatibility

> **DCM:**
 - Finalizing product (temp. controller)
 - Production strategy (ZE?)
 - Test procedure + setup + report

> **PSM**
 - System integration
 - Increase production rate

> **HOM and KLM**
 - Board development, production, testing
 - DS800
 - KLM-RTM
 - HOM-RTM

> **MO**
 - 1 channel generation
 - Redundancy controller and switch
 - Software

> **PZ16M**
 - Speed up development
 - Test PEM
 - Finalize test stand
The **RED list**

<table>
<thead>
<tr>
<th>RF station</th>
<th>TOTAL</th>
<th>Ordered [%]</th>
<th>Delivered [%]</th>
<th>installed [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2U crate</td>
<td>10</td>
<td>70%</td>
<td>70%</td>
<td>25%</td>
</tr>
<tr>
<td>9U crate</td>
<td>60</td>
<td>92%</td>
<td>28%</td>
<td>4%</td>
</tr>
<tr>
<td>uRFB</td>
<td>60</td>
<td>100%</td>
<td>22%</td>
<td>0%</td>
</tr>
<tr>
<td>DCM</td>
<td>3</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>DCM 39</td>
<td>20</td>
<td>100%</td>
<td>20%</td>
<td>10%</td>
</tr>
<tr>
<td>LOGM</td>
<td>4</td>
<td>25%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>LOGM 39</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>REFM INJ</td>
<td>1</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>REFM-OPT</td>
<td>10</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>REFM-L1</td>
<td>1</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>REFM-SLAVE-L1</td>
<td>1</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>REFM-L2</td>
<td>1</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>REFM-L2.1</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>REFM-L2.2</td>
<td>1</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>REFM-SLAVE</td>
<td>20</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>REFM-L3.1</td>
<td>4</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>REFM-L3.2</td>
<td>7</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>REFM-L3.3</td>
<td>10</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>REFM-L3.4</td>
<td>4</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>REFM-39</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>PZ16M</td>
<td>50</td>
<td>8%</td>
<td>8%</td>
<td>0%</td>
</tr>
<tr>
<td>PSM</td>
<td>61</td>
<td>100%</td>
<td>7%</td>
<td>3%</td>
</tr>
<tr>
<td>CPIM</td>
<td>30</td>
<td>100%</td>
<td>100%</td>
<td>8%</td>
</tr>
<tr>
<td>M/S switch</td>
<td>4</td>
<td>0%</td>
<td>100%</td>
<td>0%</td>
</tr>
</tbody>
</table>

uPM500W	10	100%	70%	14%
uPM1kW	120	100%	26%	4%
MCH	62	100%	19%	5%
MCH-RTM	42	100%	2%	0%
CPU	62	100%	44%	5%
x2 timer	62	100%	100%	5%
x2 timer-RTM	60	100%	92%	4%
DAMC2	54	100%	100%	4%
MPS-RTM	54	100%	100%	4%
DS800	90	0%	0%	0%
KLM-RTM	35	0%	0%	0%
HOM-RTM	55	0%	0%	0%
ICK7	60	100%	32%	3%
uVM1.3	36	100%	14%	7%
uVM3.9	4	100%	75%	0%
uADC	350	100%	4%	4%
uDWCl.3-FP	80	100%	100%	17%
uDWCl.3-BP	270	100%	52%	0%
uDWCl.3	10	0%	0%	0%
uDWCl.3-BM	5	60%	60%	33%
UILOG	48	100%	13%	0%

TOTAL | **1996** | **81%** | **33%** | **3%** |

+ MO
+ cables
Injector Installation

> Rack installation for 1.3 GHz in July

- DCM13 (2x)
- REFM-OPT (1x)
- REFM-INJ (1x)
- PZ16M (1x)
- M/S switch (2x)

> Rack installation of 3.9 GHz in August/September

- DCM39 (1x)
- LOGM39 (2x)
- REFM39 (1x)
- VM39 (2x)
- DWC39 (6x)
Accelerated cryomodule production
Typical XTL LLRF rack

> 19” modules

- 1x DCM
- 1x REFM
- 1x LOGM (INJ, L1, L2 only)
- 1x PSM
- 1x PZ16M

> MTCA system

- 2x uPM
- CPU / MCH (MCH-RTM)
- 1x x2timer / timer-RTM
- 1x TCK7 / VM (CLK-FT)
- 1x DAMC02(radmon) / MPS-RTM
- 1x DS800 / HOM-RTM
- 1x DS800 / KLM-RTM
- 6x uADC / uDWC
- 1x uLOG (L3 only)
XTL installation

- **DCM**
 - 60x
 - All produced before end of year, need first modules now (6)
 - Daniel should be freed from DCM as soon as possible to support REFM
 - Problem of immediate module availability (until mass production starts)
 - Special case of DCM39 (2x) → dummy
 - Order 10 DCMs from ZM to release time pressure

- **DS800 / KLM-RTM / HOM-RTM**
 - → session tomorrow

- **uLOG / RFB / MCH-RTM**
 - → this session