Compact ultra-high precision beam phase monitor system

K. Hacker1, F. Löhl1, H. Schlarb1, B. Schmidt1, A. Winter2
DESY1, Hamburg University2

May 16th, 2006
FLS 2006
The timing information of the electron bunch is transferred into an amplitude modulation. This modulation is measured with a photo detector and sampled by a fast ADC.
Beam pick-up signal in EO-hutch:

Material = Copper
Type = Lossy metal
Mu = 1
El. cond. = 5.8e-007 [S/m]
Beam Pick-up

Beam pick-up signal in EO-hutch:

Material: Copper
Type: Lossy metal
Mue: 1
El. cond.: 5.8e+007 [S/m]
Electro-Optical-Modulator (EOM)
Electro-Optical-Modulator (EOM)

Commercially available with bandwidths up to 40 GHz (we use a 10 GHz version)
Systematic Layout of the Phase-Monitor System

1.3 GHz

VM

DAC

DOOCS

trigger clock

ADC 100 MHz 12 / 14 Bit

LNA 200 MHz 1.5 GHz

EOM

81 MHz 1.5 GHz

beam pick-up

piezo controller

piezo fiber stretcher

Master Laser Oscillator

Florian Löhl

FLS 2006, May 16th, 2006
First Results:
Raw Data of Phase Monitor Measurement
First Results: Amplitude of Laser Pulses
First Results:
Amplitude of Laser Pulses (normalized)
First Results:
Scan of Laser Pulse over Beam Pick-up Signal

Florian Löhl
FLS 2006, May 16th, 2006
First Results:
Scan of Laser Pulse over Beam Pick-up Signal

slope used for measurement
First Results: Calibration and Resolution of the System

The resolution can be estimated from the slope of the phase monitor signal and the amplitude noise of the unmodulated laser pulses:

Best results:
- slope $\sim 7.1 \text{ ps / unit}$
- $\text{rms(laser amplitude)} \sim 0.425 \%$
- $\text{rms resolution} \sim 30 \text{ fs}$
First Results: Rel. Beam Arrival Time for Different ACC1 Gradients

ACC1 gradient
15.70 MV / m
15.65 MV / m
15.60 MV / m
First Results: Rel. Beam Arrival Time for Different ACC1 Gradients

ACC1 gradient
15.70 MV / m

\[\Delta t \approx 4.6 \text{ ps} / \text{m} \]

rms jitter \(\approx 0.5 \text{ ps} \)

Comparison measurement with TCAV yielded an arrival time change of about 3.8 ps.

Florian Löhl

FLS 2006, May 16th, 2006
First Results: Comparison Measurement between two Monitors

The signal of the beam pick-up was splitted which yields a lower resolution.

The rms-resolution of the phase monitors was estimated from the laser amplitude noise and the slope from the calibration:

Phase Monitor 1: 99 fs
Phase Monitor 2: 114 fs
First Results: Comparison Measurement between two Monitors

rms jitter

e⁻-beam (BPhM1) 357 fs

e⁻-beam (BPhM2) 342 fs

BPhM1 – BPhM2 138.8 fs
First Results: Comparison Measurement between two Monitors

rms jitter

e^--beam (BPhM1) 212.9 fs

e^--beam (BPhM2) 211.6 fs

BPhM1 – BPhM2 138.8 fs
Possible Upgrade of the Phase-Monitor System

- Reduction of the laser repetition rate
 - slower photo detector possible
 - signal from photo detector can possibly be samples directly
 - The requirements on the ADC clock are reduced due to the broader signal after the photo detector
 - With a 108 MHz ADC three sample points per laser pulse are available

Diagram:
- 1.3 GHz signal from VM to DAC
- DOOCs with trigger clock
- ADC 10 / 100 MHz, 14 / 16 Bit
- 50 MHz signal to EOM
- Beam pick-up
- 1.3 GHz signal to piezo controller
- 1.5 GHz signal to AOM
- 54 MHz signal from piezo fiber stretcher
- 2 - 10 MHz signal to Master Laser Oscillator
Summary

• Compact, low cost design
• High resolution: ~30 fs reached, sub-10 fs feasible
• A new beam pick-up design, EOM installation next to pick-up, and faster EOM promise even higher resolution
• Only few drift sources which are not removed by normalization of the laser intensity: beam pick-up, RF cable to EOM, and limiter (the cable can be made very short and the components can be temperature stabilized)
• Same concept usable for many purposes like for BPMs, RF cavity signals, and photo-diode signals

• Only sensitive to center of beam distribution
• In addition techniques like TCAV and EOS are needed for longitudinal pulse shape measurements